Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine.

نویسندگان

  • Mary Bedner
  • William A MacCrehan
چکیده

The reaction of the common pain reliever acetaminophen (paracetamol, 4-acetamidophenol) with hypochlorite was investigated over time under conditions that simulate wastewater disinfection. Initially, the reaction was studied in pure water at neutral pH (7.0), a range of reaction times (2-90 min), and a molar excess of hypochlorite (2-57 times) relative to the acetaminophen concentration. The reaction was monitored using reversed-phase liquid chromatography (LC) with ultraviolet absorbance, electrochemical, and mass spectrometric detection. At 1 micromol/L (150 ppb) and 10 micromol/L (1.5 ppm) levels, acetaminophen readily reacted to form at least 11 discernible products, all of which exhibited greater LC retention than the parent. Two of the products were unequivocally identified as the toxic compounds 1,4-benzoquinone and N-acetyl-p-benzoquinone imine (NAPQI), which is the toxicant associated with lethality in acetaminophen overdoses. With a hypochlorite dose of 57 micromol/L (4 ppm as Cl2), 88% of the acetaminophen (10 micromol/L initial) was transformed in 1 h. The two quinoidal oxidation products 1,4-benzoquinone and NAPQI accounted for 25% and 1.5% of the initial acetaminophen concentration, respectively, at a 1 h reaction time. Other products that were identified included two ring chlorination products, chloro-4-acetamidophenol and dichloro-4-acetamidophenol, which combined were approximately 7% of the initial acetaminophen concentration at 1 h. The reaction was also studied in wastewater, where similar reactivity was noted. These results demonstrate that acetaminophen is likely to be transformed significantly during wastewater chlorination. The reactivity of the chlorine-transformation products was also studied with sulfite to simulate dechlorination, and 1,4-benzoquinone and NAPQI were completely reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Synthesis and Kinetic Evaluation of Electrooxidation of Acetaminophen in the Presence of Antidepressant Drugs

With the aim of obtaining information about drug-drug interaction (DDI) between acetaminophen and some of antidepressant drugs (fluoxetine, sertraline and nortriptyline), in the present work we studied the electrochemical oxidation of acetaminophen (paracetamol) in the presence of these drugs by means of cyclic voltammetry and Controlled-potential coulometry. The reaction between N-acetyl-p-ben...

متن کامل

Electrochemical Synthesis and Kinetic Evaluation of Electrooxidation of Acetaminophen in the Presence of Antidepressant Drugs

With the aim of obtaining information about drug-drug interaction (DDI) between acetaminophen and some of antidepressant drugs (fluoxetine, sertraline and nortriptyline), in the present work we studied the electrochemical oxidation of acetaminophen (paracetamol) in the presence of these drugs by means of cyclic voltammetry and Controlled-potential coulometry. The reaction between N-acetyl-p-ben...

متن کامل

The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+.

The effects of acetaminophen and its major toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI), have been investigated in hepatocytes isolated from 3-methylcholanthrene-pretreated and -untreated rats, respectively. The two compounds produced qualitatively similar changes although the quinone imine was toxic with shorter incubations periods and at lower doses. Both agents caused an elevation...

متن کامل

Ethyl pyruvate attenuates acetaminophen-induced liver injury and prevents cellular injury induced by N-acetyl-p-benzoquinone imine

Acetaminophen, a common analgesic/antipyretic, is a frequent cause of acute liver failure in Western countries. The development of an effective cure against acetaminophen hepatotoxicity is crucial. Ethyl pyruvate, an ethyl ester derivative of pyruvic acid, has been identified as a possible candidate against acetaminophen hepatotoxicity in animal experiments. However, the mode of the hepatoprote...

متن کامل

Reactive metabolites of phenacetin and acetaminophen: a review

Phenacetin can be metabolized to reactive metabolites by a variety of mechanisms. (1) Phenacetin can be N-hydroxylated, and the resulting N-hydroxyphenacetin can be sulfated or glucuronidated. Whereas phenacetin N-O sulfate immediately rearranges to form a reactive metabolite which may covalently bind to protein, phenacetin N-O glucuronide slowly rearranges to form reactive metabolites. Incubat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2006